Издательство: | Книга по требованию |
Дата выхода: | июль 2011 |
ISBN: | 978-6-1307-0428-5 |
Объём: | 108 страниц |
Масса: | 184 г |
Размеры(В x Ш x Т), см: | 23 x 16 x 1 |
Special affine curvature, also known as the equi-affine curvature or affine curvature, is a particular type of curvature that is defined on a plane curve that remains unchanged under a special affine transformation (an affine transformation that preserves area). The curves of constant equi-affine curvature k are precisely all non-singular plane conics. Those with k > 0 are ellipses, those with k = 0 are parabolas, and those with k < 0 are hyperbolas. The usual Euclidean curvature of a curve at a point is the curvature of its osculating circle, the unique circle making second order contact with the curve at the point. In the same way, the special affine curvature of a curve at a point P is the special affine curvature of its hyperosculating conic, which is the unique conic making fourth order contact with the curve at P.
Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.