Axiomatic System

Axiomatic System

Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1305-8849-6
Объём: 140 страниц
Масса: 233 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! High Quality Content by WIKIPEDIA articles! In mathematics, an axiomatic system is any set of axioms from which some or all axioms can be used in conjunction to logically derive theorems. A mathematical theory consists of an axiomatic system and all its derived theorems. An axiomatic system that is completely described is a special kind of formal system; usually though the effort towards complete formalisation brings diminishing returns in certainty, and a lack of readability for humans. Therefore discussion of axiomatic systems is normally only semi-formal. A formal theory typically means an axiomatic system, for example formulated within model theory. A formal proof is a complete rendition of a mathematical proof within a formal system.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.