Bezouts Identity

Bezouts Identity

Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1313-0832-1
Объём: 64 страниц
Масса: 117 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! In number theory, Bezout's identity or Bezout's lemma is a linear diophantine equation.Bezout's identity is named after Etienne Bezout (1730–1783), who proved it for polynomials. However, this statement for integers can be found already in the work of French mathematician Claude Gaspard Bachet de Meziriac (1581–1638).Bezout's identity works not only in the ring of integers, but also in any other principal ideal domain (PID). That is, if R is a PID, and a and b are elements of R, and d is a greatest common divisor of a and b, then there are elements x and y in R such that ax + by = d. The reason: the ideal Ra+Rb is principal and indeed is equal to Rd. An integral domain in which Bezout's identity holds is called a Bezout domain.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.