Biharis Inequality

Biharis Inequality

Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1313-0185-8
Объём: 84 страниц
Масса: 147 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! Bihari's inequality, proved by Hungarian mathematician Imre Bihari (1915–1998), is the following nonlinear generalization of the Gronwall's lemma. Let u and be non-negative continuous functions defined on [0, ?), and let w be a continuous non-decreasing function defined on [0, ?) and w(u) > 0 on (0, ?). In mathematics, Gronwall's lemma or Gronwall's lemma, also called Gronwall–Bellman inequality, allows one to bound a function that is known to satisfy a certain differential or integral inequality by the solution of the corresponding differential or integral equation. There are two forms of the lemma, a differential form and an integral form. For the latter there are several variants.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.