Численные алгоритмы без насыщения в классических задачах математичейской физики

Численные алгоритмы без насыщения в классических задачах математичейской физики

С. Д. Алгазин

     

бумажная книга

13.41 USD


В корзину


Наличие на складе:

Склад в Москве

Ожидаемое поступление (если вы сделаете заказ прямо сейчас): 08.12.2024; планируемая отправка: 09.12.2024

Склад в С.-Петербурге

Ожидаемое поступление (если вы сделаете заказ прямо сейчас): 11.12.2024; планируемая отправка: 12.12.2024



Дата выхода: ноябрь 2016
ISBN: 978-5-904640-13-2
Объём: 390 страниц

В книге рассматривается новый подход к конструированию алгоритмов математической физики. В основном рассматриваются спектральные задачи для обыкновенных дифференциальных уравнений, уравнения Лапласа (три краевых задачи) и бигармонического уравнения (две краевые задачи). Классический подход, основанный на применении методов конечных разностей и конечных элементов, обладает существенными недостатками - он не реагирует на гладкость отыскиваемого решения. Для разностной схемы р-го порядка в независимости от гладкости отыскиваемого решения погрешность метода - 0(hp). Гладкость решения определяется входными данными задачи. Рассматриваемые в книге алгоритмы свободны от этих недостатков. Предлагаемые алгоритмы автоматически настраиваются на гладкость отыскиваемого решения и их точность тем выше, чем большим условиям гладкости отвечает отыскиваемое решение. Для рассматриваемых задач на собственные значения для обыкновенных дифференциальных уравнений экспериментально показано, что убывание погрешности - экспоненциально. Этого невозможно добиться методами конечных разностей и конечных элементов. Для двумерных задач громоздкие вычисления затабулированы в таблицах небольшого объёма, что позволяет разработать компактные алгоритмы решения поставленных задач. Монография представляет интерес для студентов и аспирантов физико-технических и математических специальностей, специалистов по численным методам, а также для научных сотрудников и инженеров, интересующихся: новыми методами численного решения задач математической физики.

Каталог