Coherent diffraction imaging

Coherent diffraction imaging

Jesse Russell Ronald Cohn

     

бумажная книга



ISBN: 978-5-5148-5155-3

High Quality Content by WIKIPEDIA articles! Coherent diffractive imaging (CDI) also coherent diffraction imaging is a “lensless” technique for 2D or 3D reconstruction of the image of nanoscale structures such as nanotubes, nanocrystals, defects, potentially proteins, and more. In CDI, a highly coherent beam of x-rays, electrons or other wavelike particle or photon is incident on an object. The beam scattered by the object produces a diffraction pattern downstream which is then collected by a detector. This recorded pattern is then used to reconstruct an image via an iterative feedback algorithm. Effectively, the objective lens in a typical microscope is replaced with software to convert from the reciprocal space diffraction pattern into a real space image. The advantage in using no lenses is that the final image is aberration–free and so resolution is only diffraction and dose limited (dependent on wavelength, aperture size and exposure). A simple Fourier transform retrieves only the intensity information and so is insufficient for creating an image from the diffraction pattern due to the phase problem.