Издательство: | BHV-СПб |
Серия: | O``REILLY |
Дата выхода: | май 2017 |
ISBN: | 978-5-9775-3758-2 |
Объём: | 336 страниц |
Масса: | 314 г |
Размеры(В x Ш x Т), см: | 24 x 17 x 2 |
Обложка: | мягкая |
Бумага: | газетная |
Переводное издание | + |
Язык оригинала: | английский |
Книга позволяет изучить науку о данных (Data Science) и применить полученные знания на практике. Она написана так, что способствует погружению в Data Science аналитика, фактически не обладающего глубокими знаниями в этой прикладной дисциплине. В объемах, достаточных для начала работы в области Data Science, книга содержит интенсивный курс языка Python, элементы линейной алгебры, математической статистики, теории вероятностей, методов сбора, очистки, нормализации и обработки данных. Даны основы машинного обучения. Описаны различные математические модели и их реализация по методу k ближайших соседей, наивной байесовской классификации, линейной и логистической регрессии, а также модели на основе деревьев принятия решений, нейронных сетей и кластеризации. Рассказано о работе с рекомендательными системами, описаны приемы обработки естественного языка, методы анализа социальных сетей, основы баз данных, SQL и MapReduce.
Книга позволяет освоить науку о данных, начав "с чистого листа". Она написана так, что способствуют погружению в Data Science аналитика, фактически не обладающего глубокими знаниями в этой прикладной дисциплине.
При этом вы убедитесь, что описанные в книге программные библиотеки, платформы, модули и пакеты инструментов, предназначенные для работы в области науки о данных, великолепно справляются с задачами анализа данных.
А если у вас есть способности к математике и навыки программирования, то Джоэл Грас поможет вам почувствовать себя комфортно с математическим и статистическим аппаратом, лежащим в основе науки о данных, а также с приемами алгоритмизации, которые потребуются для работы в этой области.
В сегодняшнем хаотическом потоке данных скрыты ответы на многие волнующие человека вопросы. Книга познакомит с методологией, которая позволит правильно сформулировать эти вопросы и найти на них ответы.
Вместе с Джоэлом Грас и его книгой:
✔ Пройдите интенсивный курс языка Python
✔ Изучите элементы линейной алгебры, математической статистики, теории вероятностей и их применение в науке о данных
✔ Займитесь сбором, очисткой, нормализацией и управлением данными
✔ Окунитесь в основы машинного обучения
✔ Познакомьтесь с различными математическими моделями и их реализацией по методу k-ближайших соседей, наивной байесовской классификации, линейной и логистической регрессии, а также моделями на основе деревьев принятия решений, нейронных сетей и кластеризации
✔ Освойте работу с рекомендательными системами, приемы обработки естественного языка, методы анализа социальных сетей, технологии MapReduce и баз данных
"Джоэл проведет для вас экскурсию по науке о данных. В результате вы перейдете от простого любопытства к глубокому пониманию насущных алгоритмов, которые должен знать любой аналитик данных."
Роит Шивапрасад, Специалист компании Amazon в области Data Science с 2014 г.