Dehn function

Dehn function

Jesse Russell Ronald Cohn

     

бумажная книга



ISBN: 978-5-5089-4523-7

High Quality Content by WIKIPEDIA articles! In the mathematical subject of geometric group theory, a Dehn function, named after Max Dehn, is an optimal function associated to a finite group presentation which bounds the area of a relation in that group (that is a freely reduced word in the generators representing the identity element of the group) in terms of the length of that relation (see pp. 79–80 in ). The growth type of the Dehn function is a quasi-isometry invariant of a finitely presented group. The Dehn function of a finitely presented group is also closely connected with non-deterministic algorithmic complexity of the word problem in groups. In particular, a finitely presented group has solvable word problem if and only if the Dehn function for a finite presentation of this group is recursive (see Theorem 2.1 in ). The notion of a Dehn function is motivated by isoperimetric problems in geometry, such as the classic isoperimetric inequality for the Euclidean plane and, more generally, the notion of a filling area function that estimates the area of a minimal surface in a Riemannian manifold in terms of the length of the boundary curve of that surface.