Эйлеровы и бернуллиевы суммы. Классические и современные результаты

А. В. Жевняк

Эйлеровы и бернуллиевы суммы. Классические и современные результаты

бумажная книга
Проверить наличие на складах

Дата отгрузки на данный момент неизвестна.

Товар закончился у основного поставщика, и, после получения заказа от вас, мы закажем его у других поставщиков. Мы не можем гарантировать выполнение данного заказа, поэтому настоятельно не рекомендуем заказывать данный товар, используя предоплату (банковский перевод и т.п.). Заказ на такой товар действителен в течение 3 недель (если в течение 3 недель товар не придет, заказ будет отменен). Однако, это не означает, что товар нельзя заказать вновь, поскольку в некоторых случаях возможны и более поздние поставки.


Технические характеристики
Дата выхода:
январь 2014
ISBN:
978-5-89885-159-0
Объём:
236 страниц

В монографии приводятся классические и современные результаты по вычислению сумм одинаковых степеней натуральных чисел с натуральными же показателями (задача Бернулли, 1713) и более общих сумм с параметром (задача Эйлера, 1755). Использованная техника суммирования основана на применении чисел Стирлинга, эйлеровых чисел и полиномов. Показана эффек­тивность применения в этих задачах многократного дифференцирования производящих функций. Дан обзор методов нахождения явных формул чисел и полиномов Бернулли. Установлены новые тождества для специальных чисел (Эйлера, Стирлинга) и биномиальных коэффициентов, с помощью которых найдены новые формулы для бернуллиевых и эйлеровых сумм, выполнены связывающие их предельные переходы. Показана возможность применения эйлеровых сумм в общей математической практике для вычисления конечных сумм, суммирования рядов и решения разностных уравнений. Применением эйлеровых сумм в форме дисконт-функций (с параметром, зависящим от став­ки дисконтирования) построены математические модели распространенных на практике кредитных схем. Разработаны математические модели кредита в условиях кризиса неплатежей (при частичном дефолте заемщиков), получены оценки эффективности кредитования в этих условиях, позволяющие управ­лять кредитным портфелем и выбирать стратегию действий кредитора. Демонстрируется возможность использования дисконт-функций в задачах фи­ нансовой математики, требующих дисконтирования на переменных ставках дисконта. Тогда современная и терминальная стоимости денежных потоков могут вычисляться построением обвертывающих рядов по дисконт-функциям.
Для специалистов по теории чисел, комбинаторике, теории разностных уравнений, риск-менеджеров банков и инвестиционных аналитиков.



Полная версия

Мы принимаем
Подробнее об оплате

1996-2025 © OTALEX