14.32 USD
Наличие на складе:
Ожидаемое поступление (если вы сделаете заказ прямо сейчас): 05.12.2024; планируемая отправка: 06.12.2024
Ожидаемое поступление (если вы сделаете заказ прямо сейчас): 08.12.2024; планируемая отправка: 09.12.2024
Издательство: | Ленанд |
Дата выхода: | июль 2016 |
ISBN: | 978-5-9710-3551-0 |
Объём: | 344 страниц |
Книга написана по конспекту лекций, который авторы много лет читали на факультете «Фундаментальные науки» студентам-математикам МГТУ имени Н.Э. Баумана. Предполагается, что читатель знаком с основами функционального анализа и методов вычислений. От аналогичных изданий она отличается глубоким проникновением функционального анализа и теории приближений в вычислительную математику, что позволило рассмотреть многие фундаментальные вопросы (интерполяцию, численное дифференцирование, теорию механических квадратур, решение дифференциальных уравнений и пр.) с единых позиций. Значительное место занимает теоретический анализ явления насыщения вычислительных алгоритмов по гладкости, вопросы построения математических таблиц, анализ ошибок округления. Особое внимание уделено основным понятиям теории приближений. Впервые в учебной литературе принципы функционального анализа применяются для практического вычисления: • Погрешностей вычислительных алгоритмов, ошибок округления и пр. • Неулучшаемых характеристик идеальных алгоритмов, к достижению которых надо стремиться вычислителям при разработке алгоритмов • Скорости сходимости приближённого решения к точному в зависимости от гладкости точного решения Дан нетрадиционный взгляд на традиционные вопросы: алгебраическая и лагранжевая интерполяции, приближённые вычисления интегралов и численное дифференцирование, решение задач Коши и краевых задач для обыкновенных дифференциальных уравнений и пр. Большое количество задач и постановка новых проблем открывает широкий простор для творчества. Книга доступна студентам старших курсов и аспирантам математических отделений технических вузов и университетов. Представляет интерес для специалистов, занимающихся теоретическим анализом вычислительных алгоритмов.