Infrastructure (number theory)

Infrastructure (number theory)

Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1311-2878-3
Объём: 64 страниц
Масса: 117 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! In mathematics, an infrastructure is a group-like structure appearing in global fields.The infrastructure was also described for other global fields, namely for algebraic function field over finite fields. This was done first by A. Stein and H. G. Zimmer in the case of real hyperelliptic function fields. It was extended to certain cubic function fields of unit rank one by R. Scheidler and A. Stein. In 1999, S. Paulus and H.-G. Ruck related the infrastructure of a real quadratic function field to the divisor class group. This connection can be generalized to arbitrary function fields and, combining with R. Schoof's results, to all global fields.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог