Издательство: | Книга по требованию |
Дата выхода: | июль 2011 |
ISBN: | 978-6-1306-2978-6 |
Объём: | 88 страниц |
Масса: | 153 г |
Размеры(В x Ш x Т), см: | 23 x 16 x 1 |
In mathematics, especially in the area of abstract algebra known as module theory, an injective module is a module Q that shares certain desirable properties with the Z-module Q of all rational numbers. Specifically, if Q is a submodule of some other module, then it is already a direct summand of that module; also, given a submodule of a module Y, then any module homomorphism from this submodule to Q can be extended to a homomorphism from all of Y to Q. This concept is dual to that of projective modules. Injective modules were introduced in (Baer 1940) and are discussed in some detail in the textbook (Lam 1999, §3). Injective modules have been heavily studied, and a variety of additional notions are defined in terms of them: Injective cogenerators are injective modules that faithfully represent the entire category of modules. Injective resolutions measure how far from injective a module is in terms of the injective dimension and represent modules in the derived category. Injective hulls are maximal essential extensions, and turn out to be minimal injective extensions.
Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.