Locally Convex Topological Vector Space

Locally Convex Topological Vector Space

Frederic P. Miller, Agnes F. Vandome, John McBrewster

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1302-9978-1
Объём: 80 страниц
Масса: 141 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

In functional analysis and related areas of mathematics, locally convex topological vector spaces or locally convex spaces are examples of topological vector spaces (TVS) which generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily normable, the existence of a convex local base for the zero vector is strong enough for the Hahn-Banach theorem to hold, yielding a sufficiently rich theory of continuous linear functionals. Frechet spaces are locally convex spaces which are metrizable and complete with respect to this metric. They are generalizations of Banach spaces, which are complete vector spaces with respect to a norm.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог