Logarithmically Concave Function

Logarithmically Concave Function

Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1311-1479-3
Объём: 116 страниц
Масса: 196 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

The natural logarithm is the logarithm to the base e, where e is an irrational constant approximately equal to 2.718281828. The natural logarithm is generally written as ln(x), loge(x) or sometimes, if the base of e is implicit, as simply log(x). The natural logarithm of a number x is the power to which e would have to be raised to equal x. For example, the natural log of e2 (approximately 7.389) is 2, the natural log of e itself is 1 because e1 = e, while the natural logarithm of 1 would be 0, since e0 = 1. The natural logarithm can be defined for all positive real numbers x as the area under the curve y = 1/t from 1 to x. The simplicity of this definition, which is matched in many other formulas involving the natural logarithm, leads to the term "natural." The definition can be extended to non-zero complex numbers, as explained below.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог