22.9 USD
Наличие на складе:
Ожидаемое поступление (если вы сделаете заказ прямо сейчас): 01.12.2024; планируемая отправка: 02.12.2024
Ожидаемое поступление (если вы сделаете заказ прямо сейчас): 04.12.2024; планируемая отправка: 05.12.2024
Издательство: | BHV-СПб |
Серия: | O``RELLY |
Дата выхода: | июль 2024 |
ISBN: | 978-601-08-4119-2 |
Объём: | 384 страниц |
Масса: | 574 г |
Размеры(В x Ш x Т), см: | 22 x 17 |
Обложка: | мягкая |
Книга содержит около 200 задач машинного обучения, таких как загрузка и обработка текстовых или числовых данных, отбор модели и многие другие. Рассмотрена работа с языком Python, библиотеками pandas и scikit-learn. Коды примеров можно вставлять, объединять и адаптировать, создавая собственное приложение. Приведены рецепты решений с использованием: векторов, матриц и массивов; данных из CSV, JSON, SQL, баз данных, облачных хранилищ и других источников; обработки данных, текста, изображений, дат и времени; умень-шения размерности и методов выделения или отбора признаков; оценивания и отбора моделей; линейной и логистической регрессии, деревьев, лесов и k ближайших соседей; опорно-векторных машин (SVM), наивных байесовых классификаторов, кластеризации и нейронных сетей; сохранения и загрузки натренированных моделей.Во втором издании все примеры обновлены, рассмотрены задачи и фреймворки глубокого обучения, расширены разделы с тензорами, нейронными сетями и библиотекой глубокого обучения PyTorch.
В книге Вы найдете рецепты для: