32.61 USD
Наличие на складе:
Ожидаемое поступление (если вы сделаете заказ прямо сейчас): 02.12.2024; планируемая отправка: 03.12.2024
Ожидаемое поступление (если вы сделаете заказ прямо сейчас): 05.12.2024; планируемая отправка: 06.12.2024
Издательство: | Наука |
Дата выхода: | январь 2012 |
ISBN: | 978-5-02-019105-1 |
Объём: | 328 страниц |
Обложка: | твёрдая |
В монографии изложен математический анализ, имеющий более высокую степень разрешения, чем классический. Концепция вещественного числа по Кантору распространяется на несчетные фундаментальные последовательности. На этой основе строится неархимедова числовая система, обладающая иерархией масштабных уровней. Описана теория пределов, рядов, производных, неопределенных и определенных интегралов.
В качестве приложений исследованы модели горного массива, обладающего иерархией структурных уровней, элементы неархимедовых геометрии и вариационного исчисления, задачи об измерении углов касания и длины многомасштабной кривой. С учетом принципа Гамильтона — Остроградского рассмотрена неархимедова динамика материальной точки, когда видимые смещения точки складываются из последовательности неподвижных состояний и скачков. В рамках арифметической концепции показано, что на микроуровне пространственные измерения и время перестают быть линейно упорядоченными и становятся многомерными. Обсуждается формула emw = - j как символ неархимедова анализа.
Книга рассчитана на научных сотрудников, интересующихся новыми математическими объектами, а также будет доступна студентам старших курсов, изучившим математический анализ.