Издательство: | Книга по требованию |
Дата выхода: | июль 2011 |
ISBN: | 978-6-1306-8235-4 |
Объём: | 68 страниц |
Масса: | 123 г |
Размеры(В x Ш x Т), см: | 23 x 16 x 1 |
In fractal geometry, the Minkowski–Bouligand dimension, also known as Minkowski dimension or box-counting dimension, is a way of determining the fractal dimension of a set S in a Euclidean space Rn, or more generally in a metric space (X, d).To calculate this dimension for a fractal S, imagine this fractal lying on an evenly-spaced grid, and count how many boxes are required to cover the set. The box-counting dimension is calculated by seeing how this number changes as we make the grid finer.Suppose that N(?) is the number of boxes of side length ? required to cover the set. Then the box-counting dimension is defined as:If the limit does not exist then one must talk about the upper box dimension and the lower box dimension which correspond to the upper limit and lower limit respectively in the expression above. In other words, the box-counting dimension is well defined only if the upper and lower box dimensions are equal. The upper box dimension is sometimes called the entropy dimension, Kolmogorov dimension, Kolmogorov capacity or upper Minkowski dimension, while the lower box dimension is also called the lower Minkowski dimension.
Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.