Издательство: | Книга по требованию |
Дата выхода: | июль 2011 |
ISBN: | 978-6-1305-0905-7 |
Объём: | 64 страниц |
Масса: | 117 г |
Размеры(В x Ш x Т), см: | 23 x 16 x 1 |
High Quality Content by WIKIPEDIA articles! In mathematics, an n-ary group (also n-group, polyadic group or multiary group) is a generalization of a group to a set G with a n-ary operation instead of a binary operation. The axioms for an n-ary group are defined in such a way as to reduce to those of a group in the case n = 2.The easiest axiom to generalize is the associative law. Ternary associativity is (abc)de = a(bcd)e = ab(cde), i.e. the string abcde with any three adjacent elements bracketed. n-ary associativity is a string of length n+(n-1) with any n adjacent elements bracketed. A set G with a closed n-ary operation is an n-ary groupoid. If the operation is associative then it is an n-ary semigroup.
Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.