N-Ary Group

N-Ary Group

Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1305-0905-7
Объём: 64 страниц
Масса: 117 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! In mathematics, an n-ary group (also n-group, polyadic group or multiary group) is a generalization of a group to a set G with a n-ary operation instead of a binary operation. The axioms for an n-ary group are defined in such a way as to reduce to those of a group in the case n = 2.The easiest axiom to generalize is the associative law. Ternary associativity is (abc)de = a(bcd)e = ab(cde), i.e. the string abcde with any three adjacent elements bracketed. n-ary associativity is a string of length n+(n-1) with any n adjacent elements bracketed. A set G with a closed n-ary operation is an n-ary groupoid. If the operation is associative then it is an n-ary semigroup.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог