Издательство: | Книга по требованию |
Дата выхода: | июль 2011 |
ISBN: | 978-6-1312-0483-8 |
Объём: | 72 страниц |
Масса: | 129 г |
Размеры(В x Ш x Т), см: | 23 x 16 x 1 |
Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In commutative algebra, an integral domain A is called an N-1 ring if its integral closure in its quotient field is a finite A module. It is called a Japanese ring (or an N-2 ring) if for every finite extension L of its quotient field K, the integral closure of A in L is a finite A module. A ring is called universally Japanese if every finitely generated integral domain over it is Japanese, and is called a Nagata ring, named for Masayoshi Nagata, (or a pseudo-geometric ring) if it is Noetherian and universally Japanese. (A ring is called geometric if it is the local ring of an algebraic variety or a completion of such a local ring, but this concept is not used much.)
Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.