Nakai Conjecture

Nakai Conjecture

Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1312-0509-5
Объём: 120 страниц
Масса: 203 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! In mathematics, the Nakai conjecture states that if V is a complex algebraic variety, such that its ring of differential operators is generated by the derivations it contains, then V is a smooth variety. This is the conjectural converse to a result of Alexander Grothendieck. It is known to be true for algebraic curves. The conjecture was proposed by the Japanese mathematician Yoshikazu Nakai. A consequence would be the Zariski-Lipman conjecture, for a complex affine variety V with coordinate ring R: if the derivations of R are a free module over R, then V is smooth.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.