Издательство: | Книга по требованию |
Дата выхода: | июль 2011 |
ISBN: | 978-6-1312-0509-5 |
Объём: | 120 страниц |
Масса: | 203 г |
Размеры(В x Ш x Т), см: | 23 x 16 x 1 |
High Quality Content by WIKIPEDIA articles! In mathematics, the Nakai conjecture states that if V is a complex algebraic variety, such that its ring of differential operators is generated by the derivations it contains, then V is a smooth variety. This is the conjectural converse to a result of Alexander Grothendieck. It is known to be true for algebraic curves. The conjecture was proposed by the Japanese mathematician Yoshikazu Nakai. A consequence would be the Zariski-Lipman conjecture, for a complex affine variety V with coordinate ring R: if the derivations of R are a free module over R, then V is smooth.
Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.