О. Стоянова М. Дли Ю. Бояринов Анна Клименко

Нейро-нечеткий метод построения моделей сложных объектов

электронная книга

Технические характеристики
Дата выхода:
май 2013

Существует ряд особенностей, свойственных задачам математического моделирования сложных систем, которые ограничивают использование известных методов. Указанное обстоятельство обусловливает необходимость разработки новых методов и алгоритмов математического моделирования, позволяющих расширить область применения технологий интеллектуального анализа данных. В статье рассмотрен метод интеллектуального анализа данных, в основе которого лежит идея самоорганизации математических моделей и аппарат гибридных нейронных сетей. Предлагаемый метод позволяет строить модели сложных систем в условиях ограниченности объёма исходных данных с учётом экспертной информации об имеющихся закономерностях и взаимосвязях. Авторы анализируют особенности задач математического моделирования сложных систем, а также предлагают методику, включающую следующие этапы: формирование обучающих выборок и подготовку структур частных моделей, генерирование частных моделей нейронной сетью, отбор лучших моделей по заданному критерию. Для тестирования разработанной методики был разработан специальный программный комплекс, с помощью которого проводились вычислительные эксперименты. Их результаты свидетельствуют о работоспособности рассмотренного метода и позволяют рекомендовать его для построения математических моделей сложных систем. Полученные модели в дальнейшем могут использоваться в качестве математического и алгоритмического обеспечения интеллектуальных информационных систем поддержки принятия решений по управлению сложными объектами произвольной природы.



Полная версия

Мы принимаем
Подробнее об оплате

1996-2025 © OTALEX