Издательство: | Книга по требованию |
Дата выхода: | июль 2011 |
ISBN: | 978-6-1312-0613-9 |
Объём: | 64 страниц |
Масса: | 117 г |
Размеры(В x Ш x Т), см: | 23 x 16 x 1 |
High Quality Content by WIKIPEDIA articles! n number theory, the Neron–Tate height (or canonical height) is a quadratic form on the Mordell-Weil group of rational points of an abelian variety defined over a global field. It is named after Andre Neron and John Tate.On an elliptic curve, the Neron-Severi group is of rank one and has a unique ample generator, so this generator is often used to define the Neron–Tate height, which is denoted h without reference to a particular line bundle. (However, the height that naturally appears in the statement of the Birch–Swinnerton-Dyer conjecture is twice this height.) On abelian varieties of higher dimension, there need not be a particular choice of smallest ample line bundle to be used in defining the Neron–Tate height.
Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.