Nonparametric Mean Preservation in Censored Regression. Using Preliminary Nonparametric Smoothing to Make Inference in Censored Regression

Nonparametric Mean Preservation in Censored Regression. Using Preliminary Nonparametric Smoothing to Make Inference in Censored Regression

Cedric Heuchenne

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-3-8364-6391-1
Объём: 180 страниц
Масса: 295 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

The aim of this book is to estimate the conditional mean of some functions depending on the response variable Y (moments, distributions...) in regression models where this response is possibly censored. In parametric regression, polynomial and nonlinear conditional means are estimated in a new way while, in nonparametric regression, some new estimators are provided to approximate general L-functionals (conditional mean, trimmed mean, quantiles...). The ideas developed in those methods lead to establish more general results in nonparametric estimation of the conditional mean of functions depending on Y and other variables and where the response can follow other schemes of incomplete data (not only censored but also missing or length-biased data). For each procedure, asymptotic properties are established while finite sample behavior is studied via simulations. Examples from a variety of areas highlight the interest of using the proposed methodologies in practice.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог