Издательство: | Книга по требованию |
Дата выхода: | июль 2011 |
ISBN: | 978-6-1310-2104-6 |
Объём: | 100 страниц |
Масса: | 172 г |
Размеры(В x Ш x Т), см: | 23 x 16 x 1 |
High Quality Content by WIKIPEDIA articles! In mathematics, obstruction theory is a name given to two different mathematical theories, both of which yield cohomological invariants. he older meaning for obstruction theory in homotopy theory relates to a procedure, inductive with respect to dimension, for extending a continuous mapping defined on a simplicial complex, or CW complex. Traditionally called Eilenberg obstruction theory, after Samuel Eilenberg. It involves cohomology groups with coefficients in homotopy groups to define obstructions to extensions. For example, with a mapping from a simplicial complex X to another, Y, defined initially on the 0-skeleton of X (the vertices of X), an extension to the 1-skeleton will be possible whenever Y is sufficiently path-connected. Extending from the 1-skeleton to the 2-skeleton means filling in the images of the solid triangles from X, given the image of the edges.
Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.