Издательство: | Книга по требованию |
Дата выхода: | июль 2011 |
ISBN: | 978-6-1312-8875-3 |
Объём: | 120 страниц |
Масса: | 203 г |
Размеры(В x Ш x Т), см: | 23 x 16 x 1 |
High Quality Content by WIKIPEDIA articles! An octree is a tree data structure in which each internal node has up to eight children. Octrees are most often used to partition a three dimensional space by recursively subdividing it into eight octants. Octrees are the three-dimensional analog of quadtrees. The name is formed from oct + tree, and normally written "octree", not "octtree". Each node in an octree subdivides the space it represents into eight octants. In a point region (PR) octree, the node stores an explicit 3-dimensional point, which is the "center" of the subdivision for that node; the point defines one of the corners for each of the eight children. In an MX octree, the subdivision point is implicitly the center of the space the node represents. The root node of a PR octree can represent infinite space; the root node of an MX octree must represent a finite bounded space so that the implicit centers are well-defined. Octrees are never considered kD-trees, as kD-trees split along a dimension and octrees split around a point. kD-trees are also always binary, which is not true of octrees.
Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.