Omitted-Variable Bias

Omitted-Variable Bias

Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1312-9973-5
Объём: 76 страниц
Масса: 135 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! In statistics, omitted-variable bias (OVB) is the bias that appears in estimates of parameters in a regression analysis when the assumed specification is incorrect, in that it omits an independent variable (possibly non-delineated) that should be in the model.In statistics, linear regression includes any approach to modeling the relationship between a scalar variable y and one or more variables denoted X, such that the model depends linearly on the unknown parameters to be estimated from the data. Such a model is called a “linear model”. Most commonly, linear regression refers to a model in which the conditional mean of y given the value of X is an affine function of X. Less commonly, linear regression could refer to a model in which the median, or some other quantile of the conditional distribution of y given X is expressed as a linear function of X.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог