Open Mapping Theorem (Complex Analysis)

Open Mapping Theorem (Complex Analysis)

Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1313-0486-6
Объём: 80 страниц
Масса: 141 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! In complex analysis, the open mapping theorem states that if U is a connected open subset of the complex plane C and f : U ? C is a non-constant holomorphic function, then f is an open map (i.e. it sends open subsets of U to open subsets of C). The open mapping theorem points to the sharp difference between holomorphy and real-differentiability. On the real line, for example, the differentiable function f(x) = x2 is not an open map, as the image of the open interval (?1,1) is the half-open interval [0,1). The theorem for example implies that a non-constant holomorphic function cannot map an open disk onto a portion of any real line embedded in the complex plane.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог