Open Mapping Theorem (Functional Analysis)

Open Mapping Theorem (Functional Analysis)

Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1313-0510-8
Объём: 72 страниц
Масса: 129 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! In functional analysis, the open mapping theorem, also known as the Banach–Schauder theorem, is a fundamental result which states that if a continuous linear operator between Banach spaces is surjective then it is an open map. More precisely, (Rudin 1973, Theorem 2.11): * If X and Y are Banach spaces and A : X -> Y is a surjective continuous linear operator, then A is an open map (i.e. if U is an open set in X, then A(U) is open in Y). The proof uses the Baire category theorem, and completeness of both X and Y is essential to the theorem. The statement of the theorem is no longer true if either space is just assumed to be a normed space, but is true if X and Y are taken to be Frechet spaces.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог