Oscillation (Mathematics)

Oscillation (Mathematics)

Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1312-9685-7
Объём: 88 страниц
Масса: 153 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! In mathematics, oscillation is the behaviour of a sequence of real numbers or a real-valued function, which does not converge, but also does not diverge to +? or -?; that is, oscillation is the failure to have a limit, and is also a quantitative measure for that. Oscillation is defined as the difference (possibly ?) between the limit superior and limit inferior. It is undefined if both are +? or both are -? (that is, if the sequence or function tends to +? or -?). For a sequence, the oscillation is defined at infinity, it is zero if and only if the sequence converges. For a function, the oscillation is defined at every limit point in [-?, +?] of the domain of the function (apart from the mentioned restriction). It is zero at a point if and only if the function has a finite limit at that point.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог