Издательство: | Книга по требованию |
Дата выхода: | июль 2011 |
ISBN: | 978-6-1312-5970-8 |
Объём: | 68 страниц |
Масса: | 123 г |
Размеры(В x Ш x Т), см: | 23 x 16 x 1 |
High Quality Content by WIKIPEDIA articles! In functional analysis a partial isometry is a linear map W between Hilbert spaces H and K such that the restriction of W to the orthogonal complement of its kernel is an isometry. We call the orthogonal complement of the kernel of W the initial subspace of W, and the range of W is called the final subspace of W. Any unitary operator on H is a partial isometry with initial and final subspaces being all of H. The concept of partial isometry can be defined in other equivalent ways. If U is an isometric map defined on a closed subset H1 of a Hilbert space H then we can define an extension W of U to all of H by the condition that W be zero on the orthogonal complement of H1. Thus a partial isometry is also sometimes defined as a closed partially defined isometric map.
Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.