Polynomial- Time Algorithm for Volume of Convex Bodies

Polynomial- Time Algorithm for Volume of Convex Bodies

Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1311-7168-0
Объём: 140 страниц
Масса: 233 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! High Quality Content by WIKIPEDIA articles! The paper is a joint work by Martin Dyer, Alan M. Frieze and Ravindran Kannan. The main result of the paper is a randomized algorithm for finding an ? approximation to the volume of a convex body K in n-dimensional Euclidean space by assume the existence of a membership oracle. The algorithm takes time bounded by a polynomial in n, the dimension of K and 1 / ?. The algorithm is a sophisticated usage of the so-called Markov chain Monte Carlo (MCMC) method. The basic scheme of the algorithm is a nearly uniform sampling from within K by placing a grid consisting n-dimensional cubes and doing a random walk over these cubes. By using the theory of rapidly mixing Markov chains, they show that it takes a polynomial time for the random walk to settle down to being a nearly uniform distribution.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.