Прикладное машинное обучение и искусственный интеллект для инженеров

Прикладное машинное обучение и искусственный интеллект для инженеров

Джеф Просиз

     

бумажная книга

22.9 USD


В корзину


Наличие на складе:

Склад в Москве

Ожидаемое поступление (если вы сделаете заказ прямо сейчас): 01.12.2024; планируемая отправка: 02.12.2024

Склад в С.-Петербурге

Ожидаемое поступление (если вы сделаете заказ прямо сейчас): 04.12.2024; планируемая отправка: 05.12.2024



Издательство: BHV-СПб
Серия: O``RELLY
Дата выхода: июнь 2024
ISBN: 978-601-09-5051-1
Объём: 640 страниц
Масса: 555 г
Размеры(В x Ш x Т), см: 22 x 17
Место в рейтинге продаж: 604

Книга рассказывает о применении искусственного интеллекта и машинного обучения в бизнесе и инженерной практике. Подробно описаны популярные алгоритмы машинного обучения и разъяснено, когда их целесообразно использовать. Приведены примеры построения моделей машинного обучения на языке Python с помощью библиотеки Scikit-Learn, а также создания нейронных сетей посредством библиотек Keras и TensorFlow. Изложены базовые принципы и способы оценки регрессионных моделей, моделей бинарной и многоклассовой классификации. Показаны примеры создания модели распознавания лиц и обнаружения объектов, языковых моделей, отвечающих на естественно-языковые вопросы и переводящих текст на другие языки. Рассмотрено использование набора облачных API Cognitive Services для внедрения ИИ в различные приложения.

 

В то время как многие руководства по искусственному интеллекту (ИИ) представляют собой скорее учебники по математике, в этой книге математики практически нет.

 

Вместо этого автор помогает инженерам и разработчикам программного обеспечения интуитивно понять и использовать ИИ для решения технических и бизнес-задач. Эта книга научит вас практическим навыкам, необходимым для внедрения ИИ и машинного обучения в вашей компании.

 

В книге приводятся примеры и иллюстрации из курсов по искусственному интеллекту и машинному обучению, которые автор преподает в компаниях и исследовательских институтах по всему миру. Здесь нет пустых слов и страшных уравнений — только полезная информация для инженеров и разработчиков программного обеспечения, дополненная практическими примерами.

 

  • узнать, что такое машинное обучение и глубокое обучение;
  • понять, как работают популярные алгоритмы машинного обучения и когда их следует применять;
  • построить модели машинного обучения на языке Python с помощью библиотеки Scikit-Learn, а также создать нейронные сети, используя библиотеки Keras и TensorFlow;
  • обучать и оценивать регрессионные модели, а также модели бинарной и многоклассовой классификации;создавать модели распознавания лиц и обнаружения объектов;
  • строить языковые модели, отвечающие на естественно-языковые вопросы и переводящие текст на другие языки;
  • использовать набор облачных API Cognitive Services для внедрения ИИ в создаваемые вами приложения.