Издательство: | Книга по требованию |
Дата выхода: | июль 2011 |
ISBN: | 978-6-1312-7673-6 |
Объём: | 124 страниц |
Масса: | 209 г |
Размеры(В x Ш x Т), см: | 23 x 16 x 1 |
High Quality Content by WIKIPEDIA articles! High Quality Content by WIKIPEDIA articles! A probabilistic metric space is a generalization of metric spaces where the distance is no longer defined on positive real numbers, but on distribution functions. Let D+ be the set of all probability distribution functions F such that F(0) = 0 (F is a nondecreasing, left continuous mapping from the real numbers R into [0, 1] such that sup F(x) = 1 where the supremum is taken over all x in R. The ordered pair (S,d) is said to be a probabilistic metric space if S is a nonempty set and d: SxS ?D+ In the following, d(p, q) is denoted by dp,q for every (p, q) ? S x S and is a distribution function dp,q(x).
Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.