Probabilistic Metric Space

Probabilistic Metric Space

Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1312-7673-6
Объём: 124 страниц
Масса: 209 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! High Quality Content by WIKIPEDIA articles! A probabilistic metric space is a generalization of metric spaces where the distance is no longer defined on positive real numbers, but on distribution functions. Let D+ be the set of all probability distribution functions F such that F(0) = 0 (F is a nondecreasing, left continuous mapping from the real numbers R into [0, 1] such that sup F(x) = 1 where the supremum is taken over all x in R. The ordered pair (S,d) is said to be a probabilistic metric space if S is a nonempty set and d: SxS ?D+ In the following, d(p, q) is denoted by dp,q for every (p, q) ? S x S and is a distribution function dp,q(x).

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.