Probability Mass Function

Probability Mass Function

Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1336-7319-9
Объём: 108 страниц
Масса: 184 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! In probability theory, a probability mass function (pmf) is a function that gives the probability that a discrete random variable is exactly equal to some value. A pmf differs from a probability density function (pdf) in that the values of a pdf, defined only for continuous random variables, are not probabilities as such. Instead, the integral of a pdf over a range of possible values (a,b] gives the probability of the random variable falling within that range. See interval notation (mathematics) for the meaning of the notation (a,b]. Since the image of X is countable, the probability mass function fX(x) is zero for all but a countable number of values of x. The discontinuity of probability mass functions reflects the fact that the cumulative distribution function of a discrete random variable is also discontinuous.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог