Proof of Bertrands Postulate

Proof of Bertrands Postulate

Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1303-1989-2
Объём: 80 страниц
Масса: 141 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! In mathematics, Bertrand's postulate (actually a theorem) states that for each n ? 2 there is a prime p such that n < p < 2n. It was first proven by Pafnuty Chebyshev, and a short but advanced proof was given by Srinivasa Ramanujan. The gist of the following elementary but involved proof by contradiction is due to Paul Erd?s; the basic idea of the proof is to show that a certain binomial coefficient needs to have a prime factor within the desired interval in order to be large enough.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог