Издательство: | Книга по требованию |
Дата выхода: | июль 2011 |
ISBN: | 978-6-1303-1989-2 |
Объём: | 80 страниц |
Масса: | 141 г |
Размеры(В x Ш x Т), см: | 23 x 16 x 1 |
High Quality Content by WIKIPEDIA articles! In mathematics, Bertrand's postulate (actually a theorem) states that for each n ? 2 there is a prime p such that n < p < 2n. It was first proven by Pafnuty Chebyshev, and a short but advanced proof was given by Srinivasa Ramanujan. The gist of the following elementary but involved proof by contradiction is due to Paul Erd?s; the basic idea of the proof is to show that a certain binomial coefficient needs to have a prime factor within the desired interval in order to be large enough.
Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.