Издательство: | Книга по требованию |
Дата выхода: | июль 2011 |
ISBN: | 978-6-1312-2216-0 |
Объём: | 108 страниц |
Масса: | 184 г |
Размеры(В x Ш x Т), см: | 23 x 16 x 1 |
High Quality Content by WIKIPEDIA articles! Quadray coordinates, also known as tetray coordinates or Chakovian coordinates, were developed by David Chako, Tom Ace et al., as another take on simplicial coordinates, a coordinate system using the simplex or tetrahedron as its basis polyhedron. The four basis vectors stem from the origin of the regular tetrahedron and go to its four corners. Their coordinate addresses are (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 1) respectively. These may be scaled and linearly combined to span conventional XYZ space, with at least one of the four coordinates unneeded (set to zero) in any given quadrant. The normalization scheme is somewhat unusual in keeping all coordinates non-negative. Typical of coordinate systems of this type (a, a, a, a) is an identity vector and may be added to normalize a result. To negate (1,0,0,0), write (?1, 0, 0, 0) then add (1, 1, 1, 1) to get (0, 1, 1, 1).
Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.