Издательство: | Книга по требованию |
Дата выхода: | июль 2011 |
ISBN: | 978-6-1312-7647-7 |
Объём: | 136 страниц |
Масса: | 227 г |
Размеры(В x Ш x Т), см: | 23 x 16 x 1 |
High Quality Content by WIKIPEDIA articles! In mathematics, a quasi-isometry is a means to compare the large-scale structure of metric spaces. The concept is especially important in Gromov's geometric group theory.Given a finite generating set S of a finitely generated group G, we can form the corresponding Cayley graph of S and G. This graph becomes a metric space if we declare the length of each edge to be 1. Taking a different finite generating set T results in a different graph and a different metric space, however the two spaces are quasi-isometric. This quasi-isometry class is thus an invariant of the group G. Any property of metric spaces that only depends on a space's quasi-isometry class immediately yields another invariant of groups, opening the field of group theory to geometric methods.
Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.