Quaternion Algebra

Quaternion Algebra

Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1303-4367-5
Объём: 120 страниц
Масса: 203 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! In mathematics, a quaternion algebra over a field F is a central simple algebra A over F[1][2] that has dimension 4 over F. Every quaternion algebra becomes the matrix algebra by extending scalars (=tensoring with a field extension), i.e. for a suitable field extension K of F, A otimes_F K is isomorphic to the 2x2 matrix algebra over K. The notion of a quaternion algebra can be seen as a generalization of the Hamilton quaternions to an arbitrary base field. The Hamilton quaternions are a quaternion algebra (in the above sense) over F = mathbb{R} (the real number field), and indeed the only one over R apart from the 2x2 real matrix algebra, up to isomorphism.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог