Издательство: | Книга по требованию |
Дата выхода: | июль 2011 |
ISBN: | 978-6-1312-4592-3 |
Объём: | 108 страниц |
Масса: | 184 г |
Размеры(В x Ш x Т), см: | 23 x 16 x 1 |
High Quality Content by WIKIPEDIA articles! In differential geometry, a quaternion-Kahler manifold (or quaternionic Kahler manifold) is a Riemannian manifold whose Riemannian holonomy group is a subgroup of Sp(n)·Sp(1). Another, more explicit, definition, uses a 3-dimensional subbundle H of End(TM) of endomorphisms of the tangent bundle to a Riemannian M. For M to be quaternion-Kahler, H should be preserved by the Levi-Civita connection and pointwise isomorphic to the imaginary quaternions, in such a way that unit imaginary quaternions in H act on TM preserving the metric. Notice that this definition includes hyperkahler manifolds. However, these are often excluded from the definition of a quaternion-Kahler manifold by imposing the condition that the scalar curvature is nonzero, or that the holonomy group is equal to Sp(n)·Sp(1).
Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.