Radicial Morphism

Radicial Morphism

Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1312-5499-4
Объём: 100 страниц
Масса: 172 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! In algebraic geometry, a domain in mathematics, a morphism of schemes f:X ? Y is called radicial or universally injective, if, for every field K the induced map X(K) ? Y(K) is injective. (EGA I, (3.5.4)) It suffices to check this for K algebraically closed. This is equivalent to the following condition: f is injective on the topological spaces and for every point x in X, the extension of the residue fields k(f(x)) ? k(x) is radicial, i.e. purely inseparable. It is also equivalent to every base change of f being injective on the underlying topological spaces. (Thus the term universally injective.) Radicial morphisms are stable under composition, products and base change. If gf is radicial, so is f.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог