Rank (Differential Topology)

Rank (Differential Topology)

Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1313-6779-3
Объём: 104 страниц
Масса: 178 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! In mathematics, the rank of a differentiable map f : M ? N between differentiable manifolds at a point p ? M is the rank of the derivative of f at p. Recall that the derivative of f at p is a linear map Df_p : T_p M to T_{f(p)}N,from the tangent space at p to the tangent space at f(p). As a linear map between vector spaces it has a well-defined rank, which is just the dimension of the image in Tf(p)N: operatorname{rank}(f)_p = dim(operatorname{im}(Df_p)).A differentiable map f : M ? N is said to have constant rank if the rank of f is the same for all p in M. Constant rank maps have a number of nice properties and are an important concept in differential topology.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог