Кристофер М. Бишоп

Распознавание образов и машинное обучение

бумажная книга
Проверить наличие на складах

Дата отгрузки на данный момент неизвестна.

Товар закончился у основного поставщика, и, после получения заказа от вас, мы закажем его у других поставщиков. Мы не можем гарантировать выполнение данного заказа, поэтому настоятельно не рекомендуем заказывать данный товар, используя предоплату (банковский перевод и т.п.). Заказ на такой товар действителен в течение 3 недель (если в течение 3 недель товар не придет, заказ будет отменен). Однако, это не означает, что товар нельзя заказать вновь, поскольку в некоторых случаях возможны и более поздние поставки.


Технические характеристики
Издательство:
Вильямс/Диалектика
Серия:
Несерийные
Дата выхода:
июль 2020
ISBN:
978-5-907144-55-2
Объём:
960 страниц
Масса:
1396 г
Размеры (В × Ш × Т):
24 × 17 см
Обложка:
твёрдая
Бумага:
офсетная
Переводное издание:
Pattern Recognition and Machine Learning

Книга представляет собой классический учебник по распознаванию образов и машинному обучению. Он содержит подробное описание наиболее важных методов машинного обучения, основанных на байесовском подходе.

Этот современный учебник, представляющий собой всеобъемлющее введение в распознавание образов и машинное обучение. Читателям достаточно знать основы многомерного математического анализа, линейной алгебры и теории вероятностей.

Книга подходит для преподавания курсов по машинному обучению, математической статистике, компьютерным наукам и распознаванию образов. Каждая глава сопровождается многочисленными задачами разного уровня сложности. Учебник предназначен для студентов старших курсов и аспирантов первого года обучения, а также исследователей и практиков, занимающихся распознавание образов и машинным обучением.

Бурное развитие практических приложений машинного обучения за последние десять лет сопровождается интенсивной разработкой важных алгоритмов и методов, лежащих в его основе. Например, байесовские методы перестали быть предметом изучения узких специалистов и стали основным трендом, а графы стали общепринятым инструментом для описания и применения вероятностных методов. Практическое значение байесовских методов все больше усиливается благодаря развитию многочисленных алгоритмов приближенного вывода, таких как вариационный байесовский подход и метод распространения ожидания.

Кроме того, все большее значение для алгоритмов и приложений приобретают новые ядерные модели.

Этот совершенно новый учебник отражает современные достижения распознавания образов и машинного обучения и представляет собой всеобъемлющее введение в эту область. Он предназначен для студентов старших курсов и аспирантов первого года обучения, а также исследователей и практиков.

От читателей не требуется предварительных знаний в области распознавания образов и машинного обучения. Достаточно знать основы многомерного математического анализа и линейной алгебры. Опыт применения теории вероятностей желателен, но не обязателен, поскольку книга содержит самостоятельное введение в теорию вероятностей.

Книгу удобно использовать для преподавания курсов по машинному обучению, статистике, компьютерным наукам, интеллектуальному анализу данных и биоинформатике. Для удобства преподавания учебник содержит большой методический материал, включающий более чем 400 упражнений, ранжированных по сложности. Решения некоторых упражнений можно найти на веб-сайте, посвященном книге. Книга сопровождается публикацией большого объема дополнительного материала на веб-сайте, который содержит новейшую информацию.



Полная версия

Мы принимаем
Подробнее об оплате

1996-2025 © OTALEX