13.54 USD 9.48 USD
вы экономите 4.06 USD (30%).
Наличие на складе:
Ожидаемое поступление (если вы сделаете заказ прямо сейчас): 02.12.2024; планируемая отправка: 03.12.2024
Ожидаемое поступление (если вы сделаете заказ прямо сейчас): 05.12.2024; планируемая отправка: 06.12.2024
Издательство: | BHV-СПб |
Серия: | O``REILLY |
Дата выхода: | февраль 2023 |
ISBN: | 978-5-9775-1770-6 |
Объём: | 224 страниц |
Масса: | 299 г |
Размеры(В x Ш x Т), см: | 24 x 17 |
Книга посвящена практическим методам анализа больших объемов данных с использованием языка Python и фреймворка Spark, она знакомит с моделью программирования Spark и основами системы с открытым исходным кодом PySpark. Каждая глава описывает отдельный аспект анализа данных, показаны основы обработки данных в PySpark и Python на примере очистки данных, подробно освещается машинное обучение с помощью Spark. Книга поможет читателю понять, как устроен и работает весь конвейер PySpark для комплексной аналитики больших наборов данных: от создания и оценки моделей до очистки, предварительной обработки и исследования данных с особым акцентом на производственные приложения. Отдельные главы посвящены обработке изображений и библиотеке Spark NLP.
В современном мире накоплен ошеломляющий объем данных, и он продолжает расти. Один из основных инструментов анализа данных — Apache Spark, фреймворк с открытым исходным кодом для распределенной обработки неструктурированных и слабоструктурированных данных. Это практическое руководство объединяет Spark, статистические методы и наборы данных из реального мира. Авторы научат вас решать задачи анализа с помощью системы с открытым исходным кодом PySpark, применяемой для распределенной обработки больших данных с использованием Python, а также других передовых методов программирования Spark.
Специалисты по обработке данных знакомят читателей с экосистемой Spark, а затем приводят примеры базовых методов анализа, включая классификацию, кластеризацию, совместную фильтрацию и обнаружение аномалий в таких областях, как геномика, безопасность и финансы. Отдельные главы посвящены обработке изображений и библиотеке Spark NLP.
Если у вас имеются базовые знания о машинном обучении и статистике, и вы программируете на Python, книга поможет вам освоить анализ больших данных.
Об авторах:
Акаш Тандон — cоучредитель и технический директор компании Looppanel. Ранее работал главным инженером по данным в компании Atlan, специализирующейся на обработке данных и аналитике.
Сэнди Райза — ведущий разработчик проекта Dagster, облачного оркестратора для анализа данных, и участник проекта Apache Spark.
Ури Ласерсон — учредитель и технический директор компании Patch Biosciences, специализирующей в области геномики и расшифровки ДНК. Ранее работал с большими данными в Cloudera, создателе дистрибутивов Apache Hadoop.
Шон Оуэн — главный архитектор решений, специализирующийся на машинном обучении и науке о данных в Databricks, компании по разработке корпоративного программного обеспечения, основанной создателями Apache Spark. Участник проекта Apache Spark.
Джош Уиллс — инженер-программист в компании WeaveGrid, развивающей «зеленые» технологии в сфере энергетики, и бывший руководитель отдела обработки данных в компании Slack Tecnologies, разработавшей одноименный корпоративный мессенджер .