Reflective Subcategory

Reflective Subcategory

Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1312-4476-6
Объём: 120 страниц
Масса: 203 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In mathematics, a subcategory A of a category B is said to be reflective in B when the inclusion functor from A to B has a left adjoint. This adjoint is sometimes called a reflector. Dually, A is said to be coreflective in B when the inclusion functor has a right adjoint. All these notions are special case of the common generalization — E-reflective subcategory, where E is a class of morphisms. The E-reflective hull of a class A of objects is defined as the smallest E-reflective subcategory containing A. Thus we can speak about reflective hull, epireflective hull, extremal epireflective hull, etc. Dual notions to the above mentioned notions are coreflection, coreflection arrow, (mono) coreflective subcategory, coreflective hull.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог