Reflexive Operator Algebra

Reflexive Operator Algebra

Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1312-4519-0
Объём: 124 страниц
Масса: 209 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! In functional analysis, a reflexive operator algebra A is an operator algebra that has enough invariant subspaces to characterize it. Formally, A is reflexive if it is equal to the algebra of bounded operators which leave invariant each subspace left invariant by every operator in A. This should not be confused with a reflexive space. Nest algebras are examples of reflexive operator algebras. In finite dimensions, these are simply algebras of all matrices of a given size whose nonzero entries lie in an upper-triangular pattern. In fact if we fix any pattern of entries in an n by n matrix containing the diagonal, then the set of all n by n matrices whose nonzero entries lie in this pattern forms a reflexive algebra.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог