Издательство: | Книга по требованию |
Дата выхода: | июль 2011 |
ISBN: | 978-6-1311-2064-0 |
Объём: | 108 страниц |
Масса: | 184 г |
Размеры(В x Ш x Т), см: | 23 x 16 x 1 |
In mathematics and statistics, particularly in the fields of machine learning and inverse problems, regularization involves introducing additional information in order to solve an ill-posed problem or to prevent overfitting. This information is usually of the form of a penalty for complexity, such as restrictions for smoothness or bounds on the vector space norm. A theoretical justification for regularization is that it attempts to impose Occam's razor on the solution. From a Bayesian point of view, many regularization techniques correspond to imposing certain prior distributions on model parameters.
Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.