Ricci Curvature

Ricci Curvature

Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1305-2097-7
Объём: 84 страниц
Масса: 147 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, represents the amount by which the volume element of a geodesic ball in a curved Riemannian manifold deviates from that of the standard ball in Euclidean space. As such, it provides one way of measuring the degree to which the geometry determined by a given Riemannian metric might differ from that of ordinary Euclidean n-space. More generally, the Ricci tensor is defined on any pseudo-Riemannian manifold. Like the metric itself, the Ricci tensor is a symmetric bilinear form on the tangent space of the manifold.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.