Издательство: | Книга по требованию |
Дата выхода: | июль 2011 |
ISBN: | 978-6-1303-3135-1 |
Объём: | 124 страниц |
Масса: | 209 г |
Размеры(В x Ш x Т), см: | 23 x 16 x 1 |
High Quality Content by WIKIPEDIA articles! In the branch of mathematics known as real analysis, the Riemann integral, created by Bernhard Riemann, was the first rigorous definition of the integral of a function on an interval. While the Riemann integral is unsuitable for many theoretical purposes, it is one of the easiest integrals to define. Some of these technical deficiencies can be remedied by the Riemann–Stieltjes integral, and most of them disappear in the Lebesgue integral. Loosely speaking, the Riemann integral is the limit of the Riemann sums of a function as the partitions get finer. If the limit exists then the function is said to be integrable (or more specifically Riemann-integrable). The Riemann sum can be made as close as desired to the Riemann integral by making the partition fine enough.
Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.