Riemann Mapping Theorem

Riemann Mapping Theorem

Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow

     

бумажная книга



Издательство: Книга по требованию
Дата выхода: июль 2011
ISBN: 978-6-1329-6042-9
Объём: 112 страниц
Масса: 190 г
Размеры(В x Ш x Т), см: 23 x 16 x 1

High Quality Content by WIKIPEDIA articles! In complex analysis, the Riemann mapping theorem states that if U is a non-empty simply connected open subset of the complex number plane Bbb C which is not all of Bbb C, then there exists a biholomorphic (bijective and holomorphic) mapping f, from U, onto the open unit disk D={zin {Bbb C} :|z|<1}. Intuitively, the condition that U be simply connected means that U does not contain any “holes”. The fact that f is biholomorphic implies that it is a conformal map and therefore angle-preserving. Intuitively, such a map preserves the shape of any sufficiently small figure, while possibly rotating and scaling (but not reflecting) it.

Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.

Каталог