Издательство: | Книга по требованию |
Дата выхода: | июль 2011 |
ISBN: | 978-6-1329-6826-5 |
Объём: | 132 страниц |
Масса: | 221 г |
Размеры(В x Ш x Т), см: | 23 x 16 x 1 |
High Quality Content by WIKIPEDIA articles! In mathematics, Robinson arithmetic, or Q, is a finitely axiomatized fragment of Peano arithmetic (PA), first set out in Robinson (1950). Q is essentially PA without the axiom schema of induction. Since Q is weaker than PA, it is incomplete. The crucial importance of Q is that this finitely axiomatized fragment of PA is already recursively incompletable and essentially undecidable. Peano axioms, also known as the Dedekind–Peano axioms or the Peano postulates, are a set of axioms for the natural numbers presented by the 19th century Italian mathematician Giuseppe Peano. These axioms have been used nearly unchanged in a number of metamathematical investigations, including research into fundamental questions of consistency and completeness of number theory.
Данное издание не является оригинальным. Книга печатается по технологии принт-он-деманд после получения заказа.